C

Continuus

TECHNOLOGIES

Automating Snowflake and AWS Integration
with Terraform

By using Terraform to automate the manual steps in integrating Snowflake with
AWS, our team streamlined the setup process, reduced human error, and saved
significant time and resources for clients.

AT A GLANCE

ABOUT THE CLIENT

Data Management department
at an Asset management, capital
market, and investment
management organization

PROBLEM

Setting up Snowflake pipelines
with AWS integration required
30-40 manual steps, making the
process time-consuming and
prone to errors

SOLUTION

Terraform to automate the
Snowflake/AWS integration
process, creating reusable code
that streamlined the setup and
eliminated the need for manual
intervention

OUTCOME

Saved significant time and
resources for clients, minimized
human error, and ensured a
more efficient and maintainable
integration process

FRAMEWORK

e DevOps and CI/CD, Configuration
Management

¢ Snowflake, Terraform, Hashicorp,
AWS, GitLab, Flyway by Redgate

PROBLEM

Our team was initially brough in to assist with setting up Snowflake pipelines using
GitLab. We set up the code and infrastructure and code in Terraform in order to
automate many parts of that process. The pipeline set up required some aspects of
Snowflake to integrate with a cloud provider, in this case Amazon Web Services
(AWS). When setting up the Snowflake/AWS integration, there are typically 30-40
manual steps to complete. We used Terraform to write a code in a universal
language and streamline, automate, and speed up the Snowflake/AWS integration.

SOLUTION

Terraform is the key to setting up the necessary building blocks for the
infrastructure and tool stack. It uses the universal Hashicorp language that acts as a
wrapper around everything to make it easily consumable and usable for other users
to understand and use - Azure pro, AWS wiz, or something else. We used Flyway by
Redgate for SQL queries and auxiliary pipelines for SQL changes.

With Terraform, we wrote code that automatically passes the necessary outputs
back and forth to each other to stand up the Snowflake/AWS integration and
bypassed the approximately 40 manual steps that otherwise needed to be
completed.

Once the code has been defined, any environment can be set up using that code set
in production; the only thing that changes is the variables passed.

Following an agile DevOps CI/CD framework and “fast fail” mentality, we received
instant feedback while standing up the code and testing the pipelines and were able
to quickly resolve any issues that arose. Ongoing support and troubleshooting from
our team enabled the clients’ teams to continue their work with minimal delays.

OUTCOME

We created code using Terraform to automate the tedious manual Snowflake/AWS
integration process, using a universal language to make it accessible to a wider
group of users and cutting out the margin for human error.

Many clients are happy with Snowflake once they are all set up in it, but the
automation of that set up is what is missing and they don't want to deal with the
manual process provided. That process is time-consuming and can be difficult to
maintain down the line. Using an agile DevOps framework, we were able to test at
every step of the way and avoid issues later on in production. Overall, automating
this process saves time and resources for the client.



